Chapter 17
Techniques for Seamless Color Registration
and Mapping on Dense 3D Models

Ruggero Pintus, Enrico Gobbetti, Marco Callieri, and Matteo Dellepiane

Abstract Today’s most widely used 3D digitization approach is a combination of
active geometric sensing, mainly using laser scanning, with active or passive color
sensing, mostly using digital photography. Producing a seamless colored object,
starting from a geometric representation and a set of photographs, is a data fusion
problem requiring effective solutions for image-to-geometry registration, and color
mapping and blending. This chapter provides a brief survey of the state-of-the-art
solutions, ranging from manual approaches to fully scalable automated methods.

Keywords Image-to-geometry registration ¢ Color mapping ¢ Color blending
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17.1 Introduction

In the cultural heritage (CH) domain, digital technologies are transforming the
way researchers, archaeologists, and curators work. It is now widely acknowledged
that accurate 3D digital models of cultural artifacts built from objective measures
are becoming central to CH research, conservation, display, and dissemination of
knowledge, and have many applications ranging from virtual restoration to visual
communication.

A large variety of active and passive noninvasive systems exists for acquiring,
at reasonable costs, a very dense and accurate sampling of both geometric and
optical surface properties of real objects. However, today the most widely used
3D digitization approach is a combination of an active scanning device (e.g., laser
triangulation, structured light, time-of-flight, interference) and digital photography.
By using computational techniques, digital surfaces are reconstructed from the
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Fig. 17.1 Pipeline overview. The input data are a 3D geometry and a set of photos of the real
object. First, an image-to-geometry alignment step registers the images to the 3D model, by
producing a set of corresponding camera poses. By exploiting the resulting link between 3D points
and pixels, a color mapping procedure produces a seamless color signal across the surface

scanner-generated range maps, and the color (or material) value sampled in digital
photos is transferred onto the surface by registering the photos with respect to
the 3D model, and projecting pixel values to the 3D surface using the recovered
inverse projections (see Fig.17.1). Since early demonstrations of the complete
modeling pipeline (e.g., Bernardini and Rushmeier 2002; Levoy et al. 2000), this
approach has proven to be particularly well suited to CH digitization, because 3D
scanning and photographic acquisition campaigns can be performed quickly and
easily, without the need to move objects to specialized acquisition labs. Even though
passive purely image-based methods have recently affirmed themselves as a viable
(and low-cost) 3D reconstruction technology (Remondino 2011), the pipeline based
on active geometric scanning sensors and separate color acquisition still remains
a widely used general-purpose approach, mainly because of the higher flexibility
and reliability for a wider variety of settings (e.g., featureless surfaces) (Remondino
2011; Koutsoudis et al. 2014).

As exemplified in Fig. 17.1, producing seamless colored objects, starting from
a geometric representation and a set of photographs, is a data fusion operation
that requires the solution of two main problems. First, the color data must be
registered with the geometric data, in order to establish the mapping between
appearance information and the 3D surface with which it must be associated. Then,
once this registration is known, the appearance, possibly coming from different
sources (images), must be mapped to the surface to produce a seamless color signal,
where each surface point has the single associated color (or material) that best
approximates the original one.

In this chapter, we provide a brief overview of the many solutions that have been
proposed for effectively solving these two steps of the coloring problem. We show
that, although early works can deal only with small and medium datasets, and are



17 Techniques for Seamless Color Registration and Mapping on Dense 3D Models 357

often limited to specific object classes, recent approaches are scalable in terms of the
image and geometry side, and are mostly (and often completely) automatic, opening
the way to interesting innovative applications.

17.2 Image-to-Geometry Registration

Image-to-geometry registration takes as input a dense 3D model, representing the
shape of the imaged artifact, and a set of N photographs. Depending on the setting,
the photographic dataset can cover the complete surface of the 3D object, only
a part of it, or a larger area. The goal of registration is to find the intrinsic and
extrinsic parameters of the imaging cameras in the reference frame of the 3D object.
These parameters are required by the mapping step (see Sect. 17.3) to transfer color
information from the images to the 3D model.

The most straightforward way to get 2D image data mapped to a geometry is to
fix a calibrated camera rigidly to an acquisition device. Fixed-relative (or colocated)
methods (Pulli et al. 1998; Fruh and Zakhor 2001, 2003) assume that the pose of the
camera is already known and relative to the position of the range scanner (or other
source of geometric data). Hence, they have the color intrinsically calibrated with
the 3D just after the acquisition, avoiding an explicit image-to-geometry registration
task.

On one hand, studies such as Yang et al. (2007) show that this kind of
approach, in a hybrid framework that exploits other methods (e.g., color-based,
see Sect. 17.2.3), can be applied in a number of interesting applications, because
the color obtained in the acquisition phase can be used to map other photos
with different appearances. Moreover, some range scanners also acquire color
information at a quality that might be high enough compared to the application
needs. However, even if there are hardware solutions able to sample geometry and
color altogether, the color quality and resolution of integrated solutions are often
insufficient for CH (e.g., low resolution, poor sensitivity), and rigidly mounting off-
axis high-quality cameras often leads to visibility problems. Moreover, in many
cases, it is not possible to acquire the 3D and the images at the same time.
Sometimes the light condition needed for the photographic dataset must be different
from that used during the 3D scanning. For instance, some sites of CH interest can
be captured only at night (e.g., Piazza della Signoria in Florence (Corsini et al.
2013)). There is often an interest in mapping multiple image datasets acquired in
different moments to the same geometry, such as the two image sets acquired by a
professional photographer before and after the restoration of Michelangelo’s statue
of David (Dellepiane et al. 2008). Moreover, the different parallax of the camera
and the range sensor in fixed-relative setups possibly results in the presence of
occlusions; the color will thus be missed in some surface regions. Finally, although
a colocated camera might help in aligning additional color images, it will not work
with a general 2D signal. In the last decade a vast number of applications in CH use
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multispectral (MS) acquisitions (e.g., far ultraviolet, far infrared thermal images). In
contrast to a reflectance signal, which is typically from a visible wavelength, these
signals might have really different appearance features; this inconsistency depends
on variations of transmittance and absorption across the spectrum. The resulting
images must be aligned to the geometry without exploiting the presence of the
colocated camera.

All these reasons lead to a broad range of techniques to enable registration of
independently acquired image and 3D datasets. The available solutions include
manual registration methods (Sect. 17.2.1), feature-based approaches that match
geometric and image features (Sect.17.2.2), color-based techniques that exploit
additional color signals from the 3D scanning device (Sect.17.2.3), statistical
approaches that rely on mutual information (Sect.17.2.4), as well as general
techniques that convert the hard to solve 2D/3D registration task to a 2D/2D
registration obtained via structure-from-motion (SfM) followed by a more viable
3D/3D alignment problem (Sect. 17.2.5).

17.2.1 Manual Methods

The most common pipeline for mapping photos onto a 3D geometry consists
of asking the user to select correspondences manually between pixels in the 2D
domain and points in 3D. Hence, the initial step will be a sequence of point-
and-clicks with which the user feeds the algorithm. Then, an automatic process
will take the burden of refining the initial, manual, rough alignment via an error
minimization strategy, and it will finally estimate the camera’s intrinsic and/or
extrinsic parameters. Initially, the solutions proposed focus on the definition of the
most usable user interfaces to facilitate this labor-intensive task (Dellepiane et al.
2008; Fruh and Zakhor 2003). Later, there was a focus on speeding up and reducing
manual operations. Borgeat et al. (2009) developed an interface where possible
feature matches were highlighted. Another more efficient strategy is to include
not only 2D/3D pairs, but also links between pixels in different images (Franken
et al. 2005). Moreover, in particular settings, careful planning of image capture
might be a solution to speed up or mostly automate the registration (Matsushita
and Kaneko 1999). In any case, although these semi-automatic methods are robust
due to continuous support and check by humans on the registration process, they are
hardly applicable if the image set starts to expand over a certain moderate cardinality
(e.g., tens or hundreds of photographs).

17.2.2 Feature-Based Methods

Feature-based techniques extract visual descriptors from the 3D model and the
photographs, and solve the image-to-geometry problem by finding correspondences
between them. Although among this class of methods a number of completely
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automatic frameworks exist, this task is generally very complex because the pure
geometry and the object, which is a mix of shape and texture, have very different
appearances. For this reason, the works in this area are typically tailored to models
with specific geometric characteristics, such as points, lines, circles (Stamos et al.
2008), rectangles (Liu and Stamos 2005), edge intensities (Neugebauer and Klein
1999), or viewpoint-invariant patches (Wu et al. 2008). Their performances are
mostly reliable with 3D models of buildings, which show very sharp edges that can
be easily extracted by a geometric operator applied to the 3D data, and are a very
clear gradient signal in the 2D images. Another class of approaches (Kaminsky
et al. 2009; Stamos and Alien 2001) focuses on the alignment of maps and/or
floor plans (which contain a number of straight lines) with both indoor and outdoor
environments acquired with 3D LIDAR scanners, which exhibit several linear edges
and planes. Also the relationship between these features could help in finding a good
set of camera poses. Liu et al. (2006) rely on the presence of clusters of vertical
and horizontal lines, and they exploit the orthogonality constraints to drive the
registration algorithm. They process the geometry to extract parallelepipeds, and
they find correspondences between them and rectangles in the photographs. This
method results in being very suitable for complex urban scenes.

A strong and robust feature that can be efficiently employed to find matches
between images and shapes is the silhouette. A number of methods successfully use
it to undertake image-to-geometry alignment (Lowe 1991; Brunie et al. 1992). The
key idea is that silhouette contours are very fast and simple to extract both in the
image and in the rendered input 3D model, and their appearance is very similar and
independent of object texture. Lensch et al. (2000) present an efficient, hardware-
accelerated implementation of such algorithms, and propose a robust similarity
function. They also do not need any manual intervention.

Unfortunately, these techniques require the whole object to be visible in all input
photographs. In addition, they moderately depend on the accuracy of the algorithm
for background and foreground separation, which sometimes is refined manually
by the user. This latter element might pose some restrictions on the acquisition
setup and size of the framed object (e.g., a severe limitation for a large-scale target),
reducing the spectrum of possible applications.

17.2.3 Color-Based Methods

Whereas feature-based methods try to extract a visual cue from the geometry com-
parable to the intensity or color signal in the photographs, color-based techniques
exploit appearance data provided by the acquisition device and, hence, already
attached to the geometric primitives (e.g., intensity, color, laser reflectance). In
this scenario, the comparison of image descriptors and the computation of matches
is naturally more efficient and reliable. The methods of Ikeuchi et al. (2007) and
Sequeira and Gongalves (2002) rely on the extraction of edges in the reflectance
information. These data show characteristics similar to color images, because these
edges come from the discontinuities in the materials across the surface, and they
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are likely to produce gradients in the same regions both in the color and reflectance
signals. Yang et al. (2007) use a colocated setup that produces a set of colored range
maps. Then they extract image descriptors from the color captured by the scanner
and by a handheld camera. The correspondences between these two sources are
employed to compute the extrinsic and intrinsic parameters of the handheld camera,
solving the 2D/3D registration.Wu et al. (2008) present a novel feature called VIP
(viewpoint invariant patch), and apply it to both the image-to-geometry problem
and to the registration of two shapes. They normalize the local orientation and
viewpoint by performing local texture rectification, and by computing a dominant
image gradient. Their method is a robust alignment strategy of images and scenes,
even if they are seen from very different viewpoints or they have a little overlap.
This framework is particularly suitable for large-scale and complex scenes when a
lot of 2D/3D or 3D/3D registrations have to be undertaken.

17.2.4 Statistical Methods

Statistical image registration methods based on mutual information (MI) are exten-
sively used in many applications. In the field of image-to-geometry registration,
MI is capable of analyzing nonlinear correlations and photoconsistency between
the intensity signal in the image and some measure present in the target surface,
avoiding 3D descriptor extraction. The seminal work of Viola and Wells (1997)
correlates the image gradient with a particular rendering of the surface normals.
Cleju and Saupe (2007) improve this work by a global approach based on a
stochastic mathematical framework for joint optimization of multiple image-to-
geometry registrations.

When available, an important signal for MI computation is the intensity of the
reflected laser beam. Williams et al. (2004) present an automatic registration that
uses intensity comparisons between color images and geometry texture mapped
with laser reflectance. They employ a gradient descent optimization to find the
best solution that minimizes the alignment cost function. However, Hantak and
Lastra (2006) show how in some cases the metric used in this approach produces
multiple minima within the search space, dropping down the confidence in spotting
the right minimum. Hence, they explore different information metrics applied to
different environments. This leads them to the conclusion that coupling these
metrics with global minimization techniques produce in general better results at
the cost of higher computational time. The method of Mastin et al. (2009) exploits
the statistical dependency that in urban scenes correlates the LIDAR elevation with
the optical appearance. They measure MI between LIDAR and the optical signal,
and apply downhill simplex optimization to find camera poses. They initialize each
camera pose from GPS data, and harness the power of graphics hardware to reduce
registration times dramatically. In the field of CH, Corsini et al. (2009) take Viola
and Wells’s idea of generating an intensity signal from normals, and extend that
by including additional surface properties, such as ambient occlusion and reflection
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directions. The hybrid method of Zheng et al. (2010) strives to integrate, instead,
the advantages of statistical and feature-based registration (Zheng et al. 2010)
by projecting the 3D surface onto 2D normal images. This enables the extraction
of local geodesic descriptors, which can be used to perform an initial image-to-
image and image-to-geometry registration, which is then refined by using MI and
global stochastic optimization. Recently, Dellepiane and Scopigno (2013) proposed
a MI framework that focuses on registration refinement; they globally tune the
camera poses by fitting the original color signal with the color mapping result, thus
removing artifacts produced by small image misalignments (see also Sect. 17.3.2).

Unfortunately, all these methods are robust only if they are given a good enough
initial camera pose(s) in advance. Otherwise, it is likely they will not converge to
a right solution. Moreover, signals used for correlation are not always available as
geometric attributes.

17.2.5 Multiview Methods

In previous sections the vast majority of the approaches already mentioned aim
at mapping one single image at a time; conversely, multiview techniques exploit
the intrinsic grouping nature of the input images and the relations among them.
The fundamental insight that underlies the class of multiview- based methods is
to transform the original image-to-geometry registration problem into an image-
to-image registration step, followed by an alignment between two 3D shapes.
In particular, recasting the 2D/3D matching problem into a 3D/3D alignment is
made possible by using available and mature structure-from-motion approaches,
which take an image set and robustly generate a sparse point cloud of the framed
object together with a structure of images aligned to it. Hence, registering the
original dense geometry with the one resulting from the SfM step will implicitly
solve the image-to-geometry mapping. Methods in this class are more generally
applicable, inasmuch as they do not require such strict constraints as others do.
Compared to feature-based methods (Sect.17.2.2) they do not rely on specific
features such as circles, lines, or orthogonal planes. Furthermore, they do not try
to find correspondences between images and geometry, but they first find matches
between images (SfM step), which is a much faster and simpler task, and then solve
a pairwise geometry alignment, which is a well-studied problem too. Apart from
the completely automatic multiview solutions, compared to statistical approaches
(Sect. 17.2.4), the multiview methods reduce manual intervention and completely
avoid the use of any additional attributes of the geometrical primitives, which are
not always accessible, such as reflectance, color from the acquisition device, LIDAR
elevation, or probability of detection (see Sects. 17.2.3 and 17.2.4). The techniques
in the multiview class just need a moderate presence of any type of texture and/or
geometrical features, which is a normal nonlimiting requirement of the classical
StM algorithm.
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One of the earliest works in this field was due to Zhao et al. (2005), which
presented a way to register a video onto a point cloud. By using motion stereo, they
computed a point cloud and a set of relative camera positions from a continuous
(oblique) video. After the alignment of just two frames with a dense point cloud
directly obtained from a range sensor, they employed an ICP-based procedure to
refine the registration between the sparse geometry and the target 3D models. This
framework proved to be very efficient for coloring large-scale digital models in
urban scenes. Unfortunately, it is limited to a dense and ordered (video) sequence
of highly overlapping images. After this seminal contribution, some past methods
have been updated in a hybrid framework that includes some advantages of a
multiview processing step. For instance, Liu et al. (2006) extended their previous
work on a feature-based 2D/3D mapping (Liu and Stamos 2005), by integrating
a SfM geometry and an automatic 3D registration. They used a number of 3D
scans to build a dense point cloud; in this step they inherited the feature-based
approach of the previous work to find correspondences between 3D lines in the
range images. Then, they computed a sparse geometry from the sequence of the
input 2D photographs. They found the rotation, scale, and translation that minimized
the distance between the two 3D shapes. Stamos et al. (2008) relaxed the line-based
orthogonality constraint in order to apply the algorithm not only in urban scenes,
but also in complex indoor architectures. Unfortunately, the limit of these hybrid
systems to align only 3D models of architectural items remains, so that the spirit of
multiview has not been completely exploited to solve a more general problem.

Inasmuch as relying on ordered sets of images is a too limiting constraint, such
as in Zhao et al. (2005), a number of methods naturally arose that tried to deal
with unordered sets of sufficiently overlapping photos. Moreover, acquisition of
complex geometrical shapes inevitably leads to nonuniform image sampling; the
capture must be performed adaptively, and the number and density of 2D frames
per region depends on the presence and nature of surface occlusions. This kind of
acquisition strategy eventually produces an unordered image set as input for the
registration pipeline.

Li and Low (2009) register unordered image sequences from untracked and
uncalibrated cameras onto 3D geometry. Their method is pure multiview. However,
they make use of projectors to illuminate the scene of indoor environments with a
special light pattern in order to increase the algorithm robustness in regions with a
low presence of image features. They manually define a rough registration between
the model from SfM and the detailed one. In the refinement stage, they exploit plane
segmentation of the input geometry, and employ a cost function that is a mix of
object-space error (point-to-plane distance), and image-based reprojection error. A
further manual tuning of a heuristic parameter is required to weight these two error
terms properly. Similar semi-automatic approaches have been proposed by Banno
and Ikeuchi (2010) and Pintus et al. (2011c). The first presents an accurate texturing
method that estimates camera extrinsic parameters by computing a sparse geometry
from a spherical image stereo dataset. They measure the distance between the sparse
and dense geometry (from a range sensor) by taking into account the uncertainty
distribution of 3D in the stereo data. After the rough manual alignment of a few
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images to the dense geometry, Pintus et al. (2011c) propose an image-to-geometry
optimization that in a nonrigid manner independently deforms the sparse 3D points
together with the poses of each camera. The error metric relies only on image-based
reprojection error. On the other hand, their method is only applicable to uniformly
sampled 3D models.

Due to the well-known problem that SfM techniques reconstruct a sparse 3D
point cloud up to a scale factor, aligning it with the geometry from the range sensor
requires an affine transformation. All the previous methods require minimal user
intervention to define an approximate registration, which is the initial affine mapping
condition for the final algorithm to converge. The lack of a completely automatic
pipeline is the main drawback of these otherwise very robust techniques. To
overcome this issue, recently, two completely automatic and orthogonal approaches
have been presented that are capable of dealing with large input datasets and need
neither an object-dependent parameter setting, nor, of course, a manual intervention.

Corsini et al. (2013) propose a novel multistage framework for a fully automatic
2D/3D global registration, shown in Fig. 17.2. After the SfM procedure, carried
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Fig. 17.2 The multi-image alignment proposed by Corsini et al. (2013), which uses an approach
similar to Pintus et al. (2011c, 2015): The images are used to compute a sparse point cloud
using SfM, and the cloud is then aligned to the target geometry, thus obtaining an initial camera
orientation that will then be refined using mutual information (Reprinted from Corsini et al. 2013
with kind permission from Springer Science+Business Media)
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out similarly to Pintus et al. (2011c), the generated sparse point cloud is aligned
with the dense model by using a modified version of the four-point congruent
set (4PCS) (Aiger et al. 2008) algorithm. The 4PCS deals with rigid motion,
however, they extend it to cope with both different scales and an unknown amount
of overlapping regions. Finally, a global refinement strategy is used based on
mutual information, which minimizes the color reprojection error of the images
onto the geometry. The method of Pintus et al.(2015) is another completely
automatic solution that performs a coarse image-to-geometry alignment by using
a GPU-based global stochastic registration approach to find the optimal affine
transformation between the sparse SfM 3D and the dense, original point cloud (Agus
et al. 2014). They propose a robust statistics to manage outliers, and a strategy
to estimate automatically a local adaptive tolerance to deal with nonuniformly
sampled 3D geometry. As in Pintus et al. (201 1c), they refine intrinsic and extrinsic
parameters of each camera in a nonrigid manner, by employing a specialized
sparse bundle adjustment (SBA) step and an image-based error metric. Compared
to Corsini et al. (2013), they do not require heavy preprocessing to make the SfM
sparse point cloud dense, because the global registration method employed in the
coarse alignment step recovers the globally optimal scale, rotation, and translation
alignment parameters using a stochastic algorithm for pairwise affine registration of
the coarse point cloud coming from SfM with the fine point cloud representing the
geometric model (Agus et al. 2014).

These approaches based on fully automatic 2D/3D registration are more gen-
erally applicable and robust. Their main advantage is that they do not make any
assumption tailored to the geometry type, size, or sampling, and are suitable
to be applied to small, medium, and large objects of different natures. Because
they are scalable, they remain suitable even if the image set size grows, opening
possibilities for new scenarios and more interesting applications of unattended
image-to-geometry alignment and mapping (e.g., automatic Web-based services).
The most costly and difficult step is the automatic global registration, which can
eventually be replaced, in difficult cases, by a simple manual initialization based on
a few hand-picked correspondences between image and geometry, followed by local
refinement.

17.3 Mapping Color to 3D Geometries

In all the described cases, the result of the image registration algorithms is the
calibration and orientation of one or more photos in the reference space of a 3D
geometry. Although there are many direct uses of a set of calibrated and oriented
images, in most cases, the image alignment is used to map the color information
onto the 3D geometry, thus obtaining a colored 3D model.

The recovered camera alignment data are, basically, a perspective projection
matrix. By using this perspective projection, it is easy to establish the inverse
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correlation between the color information on the photos and the 3D geometry. Using
this inverse projection, the color can be mapped onto the 3D geometry: this principle
is the basis for all the mapping methods.

The case of a single registered image is, then, trivial, because a simple inverse
perspective projection will be enough to map the color onto the 3D geometry.
The visibility problem determines what part of the surface is directly visible by
the camera (and thus can be mapped from that specific photo) and can be solved
numerically (precise but computationally cumbersome) or by exploiting the GPU,
using the well-known shadow mapping algorithm or other specialized shaders. The
visibility problem is more complex in the case of point clouds; inasmuch as direct
shadow mapping would not work, Pintus et al. (2011a) use GPU accelerated screen-
space operators, able to fill the sparse depth-map produced from the point cloud.

The problems arise when there is more than one photo that has to be mapped
on the 3D surface. The basic inverse projection is still used to map color from the
photos to the surface, however, the issue is now what happens when more than
one input photo maps onto the same area of the 3D surface. It is necessary to
determine, among the available registered photos mapping in a specific area of the
3D surface, which is the correct color information that has to be projected and/or to
solve the “blending problem,” that is, combine the available contribution to have a
more continuous color mapping. This topic is covered in Sect. 17.3.1.

A common problem of the color mapping process is the fact that, no matter
how precise the image-to-geometry alignment, it will never be perfect, or perfectly
coherent between images. By applying local or local-global optimization of the
cameras and projected color information it is possible to overcome the classical
artifacts of ghosting and blurring. These methods are covered in Sect. 17.3.2.

Finally, another problem in the color projection from multiple registered cameras
is the presence of lighting and photometric incoherence between the input photos, or
the presence of view-dependent artifacts (e.g., highlights) that change their relative
position from one photo to another. Although some of these issues can be reduced
or removed by the blending process, there are specific methods in the literature that
can be applied to solve these situations (see Sect. 17.3.3).

17.3.1 Projecting and Blending

An issue that is orthogonal to the mapping method is where to store the mapped
color: a family of solutions uses (or creates) a surface parameterization and stores
the mapped color in the texture map; a different approach is to encode color per
vertex; finally, some algorithms may work regardless of the final color encoding.
The earliest works dealing with the mapping and blending problem tried to avoid
entirely the computation of a static color mapping, but opted for a view-dependent
texture mapping, dynamically creating a color mapping as the object was rendered.
This was done, for example, by using a per-triangle computation of the best photo,
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and perspective mapping directly on the graphics hardware, such as in Debevec
et al. (1998); or by selecting the relevant images for a specific view, and then mixing
multiple images using a weighting scheme (Pulli et al. 1998), blending the different
contributions in a continuous mapped image.

Although it is able to provide good results, view-dependent texture mapping is
not used much anymore, and the more modern color mapping methods all rely on
the creation of a static mapping.

In these early examples, however, it is already possible to see the two opposite
strategies that can be used when multiple photos are projecting on the same element
of the 3D geometry that has to be mapped (a triangle, in texture mapping, or a vertex
for per-vertex color mapping or in point clouds):

* Among the available contributions, the “best” photo for that specific element will
be chosen, according to some criteria, and mapped on the surface.

* All the available contributions will be blended, using some form of weighting,
and the interpolated result will be mapped on the surface.

The advantage of the first strategy is that the detail of the mapping remains at the
same level of the input photos, but there will be discontinuities (color shift and detail
misalignments) in the borders between areas assigned to different input photos. On
the other hand, the color mapped using the blending strategy will produce a much
smoother result, without discontinuities, but at the price of a less sharp appearance,
and the presence of ghosting and blurring if the input photos are not perfectly
aligned to the 3D geometry. The various methods available in the literature try to
cover the spectrum between these two extremes, providing a solution that combines
these two basic strategies.

The “best” contribution is one of the oldest strategies in color mapping; it is still
used a lot in both open and commercial tools (Walkowski et al. 2008), especially
when the final result of the mapping has to be a texture map. As the registered photos
define a perspective projection, in most cases the projective transformations from
the 3D surface to the input photos result in a natural and usable parameterization.
Some mapping methods (Lensch et al. 2001; Rocchini et al. 2002; Callieri et al.
2002) build a parameterization for the 3D surface by dividing the triangulated mesh
in patches, each one assigned to the “best” input image, parameterized using the
perspective projection of that input image and packed in a texture map. Lensch
et al. (2001) and Rocchini et al. (2002) filter the border between adjacent patches
to reduce the discontinuity, whereas (Callieri et al. 2002) apply a texture-wide
color/luminance correction to make the color uniform across the different photos.

Instead of using a simple “best contribution” criterion, but still wanting to use
fragments of the original images directly, it is also possible to rely on existing image
mosaicing and stitching optimization techniques, derived from the research on 2D
image processing. Sinha et al. (2008) use a graph-cut optimization using a Markov
random field (MRF) minimization framework to define, at a per-texel level, the most
suitable photographic source to minimize incoherence, and then apply a Poisson
blending to clear the remaining discontinuities. Lempitsky and Ivanov (2007) also
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use this kind of MRF minimization, but at a per-triangle level, and Gal et al. (2010)
also introduce a parameterization shifting order to correct image registration errors.

A different strategy may be to separate the high and low frequencies of the input
images, and use different strategies to combine different bands to obtain a smooth
mapping simultaneously, but with sharp details. Baumberg (2002) separates the
input images in two bands: in every given area of the 3D model all the low-frequency
components are blended using weights, but only the “best” high-frequency details
are mapped. This solution is also used by Allene et al.(2008) and by Pintus
et al. (2011a) on point clouds.

Among the methods blending all available contributions, performing a weighted
sum is the most common way to combine contributions (Pulli et al. 1998; Bernardini
et al. 2001; Callieri et al. 2008; Pintus et al. 2011a,b; Bettio et al. 2015). All these
researchers use weighted blending. The weights used in these and other works are
many, and are related to different aspects of the dataset. They may be related to
geometry (depth discontinuities), camera (image sharpness, low quality on borders,
image discontinuities), or geometry-camera relationship (orthogonality of the photo
with respect to the surface, distance from the object). A useful feature of weighting
schemes is that it is easy to add new metrics that are specific for a given dataset or
acquisition/reconstruction technology.

In order to combine the different contributions in a single mapping, blending is
simple and effective, but prone to blurring. To obtain a more continuous but sharp
mapping, it is possible to solve a Poisson equation over the 3D surface (Chuang
et al. 2009), taking into account the input image gradients, building a continuous
yet nonblurred color field. Another interesting method is to use a super-resolution
approach over the texture space (Goldluecke and Cremers 2009), resulting in a
texture of the input photos that is more detailed.

Even though point clouds are widely used directly, without converting them to a
triangulated surface, there are not many color mapping methods suitable for these
kinds of data. Pintus et al. (2011a,b) work directly on the point clouds, mapping
color to each vertex, using a weighted blending two-band strategy, able to work on
very large datasets. Conversely, Arikan et al. (2014) use the point clouds to create a
series of local meshes, defined by the areas framed by the registered photos, which
are then properly stitched during rendering.

Many of the discussed techniques assume that both geometry and images fit
in memory, which severely limits the scalability of the methods. Some methods
assume, instead, that the 3D model is very small and fits in memory, and the image
and mask dataset are stored in an out-of-core structure (e.g., Xu et al. 2010; Callieri
et al. 2008). The approaches that scale to large amounts of color and geometric
data are typically based on some variation of the weighted blending approaches.
Callieri et al. (2008) and Bettio et al. (2013, 2015) deal with massive models by
using two out-of-core structures, one for the model and one for images and masks.
By contrast, Pintus et al. (2011b; 2011a) use a streaming framework for efficiently
blending images on massive point clouds in a low memory setting and through
memory-coherent operations, providing unprecedented performance (Fig. 17.3). In
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Fig. 17.3 First row: Image blending on massive point clouds, the case of Michelangelo’s David
statue (0.25 mm dataset). It is a 470 million point 3D model with color coming from a 548 Mpixel
dataset (67 photos). Second row: The effect of the image-based adaptive point cloud refinement on
the final color signal; we present two images of the final colored model, and a comparison between
the image blending on the original point cloud and the image blending on the adaptively refined
geometry (With kind permission from Eurographics Association: Pintus et al. 2011b, Figs. 7, 8 and
9; Scopigno, R., Fig. 1)

addition, the latter approach supports adaptive geometry refinement as a function of
image content, which is achieved during the blending phase by selectively refining
the point cloud in areas with high-frequency image contents (Fig. 17.3, second row).

17.3.2 Fixing Misalignments

Color projection on 3D models is a straightforward and convenient way to obtain a
visually pleasing result starting from a simple input. Nevertheless, annoying artifacts
may appear on the model, regardless of the mapping strategy chosen.

One of major issues is due to the misalignments of images that have to be
projected: this leads to the aliasing/blurring of fine details of models, because the
images are simply projecting the same data on slightly different positions of the
surface. Misalignments are less visible in the case of methods where a single image
is chosen for projection: misalignments may be visible in the borders between
adjacent patches. Unfortunately, the selection of a single image for each portion
of a surface usually works well on simple cases, but when the number of images
rises, it leads to very fragmented color, where artifacts are visible again.
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The misalignment issues are only partially inherent to the registration and
projection methods. They usually come from the quality of the input data, in
particular:

* The camera parameters: It’s important to stress that image registration is obtained
by applying a camera model to fit real cameras. This means that in particular
cases there will be no possibility of achieving a perfect alignment, because the
model is not able to describe the camera perfectly.

e The 3D model quality: If the geometric representation of the object is not
accurate, a perfect alignment will not be possible.

* The quality of images: Similarly as above, if the quality of 2D data is low, even
semi-automatic methods may fail. Moreover, low- quality images may strongly
concur in blurred and aliased details.

Given that the input data are not perfect, fixing the misalignments may not be
an issue related to a better estimation of camera parameters. Some methods take
this into account to get the best color: for example, Lempitsky and Ivanov (2007)
inserted a term in their minimization function that should reduce misalignment
artifacts. All these methods are based on a quite strong assumption: that the 3D
model is accurate enough to allow an accurate color projection.

More recently, Dellepiane and Scopigno (2013) proposed a global refinement
method to reduce misalignments. The result of any image-to-geometry registration
method can be the input of this approach. The method is based on mutual
information. The camera parameters of each image are refined by trying to fit the
color projected by all the other images on the 3D model. In this way the error is
globally distributed, and fine details are better preserved. This works regardless of
the quality of the 3D model, and only camera parameters are changed.

The main way to achieve an optimized alignment, though, is to be able to modify
all the elements of the projection dataset. In the following, we review the recently
proposed methods.

The quality of color projection can be improved by modifying all the elements
of the projection set: camera parameters, geometry, images. Recently the problem
came out after the rise of multiview stereo matching techniques. In this case,
similarly to the work by Gal et al. (2010), the big advantage comes from the fact
that geometry and color are produced starting from the same input: the images.
Given this, the geometry can be modified to better fit the images. Alternatively,
taking into account the matching among images enables us to preserve detail. The
work by Waechter et al. (2014) shows that this can be used to obtain large- scale 3D
texturing.

In a more general case, geometry and images are acquired at a different moment,
thus it could be harder to handle them. Pintus et al. (201 1a) used a frequency analysis
and the increase in data density to improve the projection on point clouds. In the
case of triangulated surfaces, a possibility is to warp images so that they will project
the same color information in the same part of the surface. Eisemann et al. (2008)



370 R. Pintus et al.

used it to fit textures to body models. They proposed a GPU implementation of the
method that reaches real-time performances. Hence the algorithm can be employed
not only in offline image-to-geometry registration frameworks, but also in image-
based visualizations.

Dellepiane et al. (2012) extended the concept to more complex cases: for each
portion of the surface, an image is chosen as the “leading” one. All the other images
are warped using optical flow in order to project the same color detail as the leading
one. The border between adjacent parts is handled by mixing the warping in order
to avoid discontinuities. This approach is able to put together the advantages of the
“best photo” approach (high- quality fine details) with the advantages of blending
approaches (coherent color, no discontinuities).

More recently, Zhou and Koltun (2014) proposed a method to map color on
data coming from depth cameras. The method put together the camera parameters’
refinement and the flow-based approach in a unique system to be optimized. Given
the complexity of the problem, the system was solved in an iterative way (by refining
cameras and flow one at a time), and the results were more than satisfying.

17.3.3 Fixing Color and Lighting Issues

The other issue when dealing with color mapping from images is that the color is
projected “as it is”, without any previous knowledge of illumination conditions. This
leads to the fact that illumination artifacts (highlights, shadows) are projected on the
model.

The proper way to be able to remove artifacts would be to acquire the color under
controlled light conditions (i.e., by knowing the position and intensity of the main
sources of light in the scene). This is quite impractical during an onsite acquisition,
or when working outdoors.

A possible approach is to analyze the images to detect and remove artifacts, but
the purely image-based approaches are prone to errors and false positives (Xu et al.
2005; Guo et al. 2011). Another possible approach is to take advantage of the fact
that more than one image will cover each part of the surface. In this case, some
artifacts can be detected as outliers, and removed. These methods work reliably only
when several images of the same portion are available (Frahm et al. 2010). This is
not always possible, especially when high-quality images are needed. Hence, an
alternative way is to have better knowledge of the lighting environment.

That being said, except for laboratory conditions and objects of small size, it’s
rarely possible to set up a controlled light environment. Alternatively, it’s possible
to try to estimate it: once the 3D model, the camera parameters, and the light
positions are known, the lighting artifacts can be easily detected and removed. The
lighting environment can be acquired using ad hoc devices (Corsini et al. 2008).
An alternative solution can be to use the object itself as a light probe. The analysis
of the behavior of artifacts (i.e., the change in position of highlights) can be used
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to estimate the position of the main light sources in the scene. Palma et al. (2012)
used video sequences to estimate the illumination environment, and also extracted a
simplified description of the material of an object.

Another source of light that could be possibly estimated is the sky. Haber
et al. (2009) analyzed the sky and the appearance of an object to estimate the
skydome environment and relight images. Dellepiane et al. (2010a) estimated the
sun’s position (in an automatic or semi-automatic way) to remove hard shadows.

Finally, an interesting example of a controlled but easy to use light setup is
FIISS (Dellepiane et al. 2010b), where the integrated flash device of the digital
camera is used. This type of light has the advantage of being always at the same
position w.r.t. the camera, and to provide dominant lighting in the scene. Hence, it is
easy to detect and remove artifacts, and it is possible to obtain a partially calibrated
color after a calibration step is performed once in a lifetime. Starting from the
consideration that medium- to high-end single-lens reflex (SLR) cameras support
fairly uniform flash illumination and RAW data acquisition modes that produce
images where each pixel value is proportional to incoming radiance (Kim et al.
2012; Bettio et al. 2013, 2015) take the simpler approach of using constant color
balance correction for the entire set of photographs and apply a per-pixel intensity
correction based on geometric principles, taking into account distance and surface
orientation.

17.4 Conclusions

We have provided an overview of many different approaches that have been
proposed for effectively solving image-to-geometry registration and color mapping
and blending. Despite the fact that in recent years many powerful pure vision-based
methods have been developed and widely used to reconstruct both geometry and
color, the interest in aligning 2D maps onto 3D surfaces remains very high. This is
because different types of signals, or data acquired at different times, still need to
be registered. Effectively solving 2D to 3D mapping and fusion is therefore of high
importance for many application domains, including cultural heritage.

Although the various methods can be mixed and matched to create a pipeline
for aligning and a separate one for producing seamless colored objects after
alignment, we have seen that solutions of these two problems are often intertwined.
In particular, a recent trend has been to perform fine registration steps during
the color blending passes to produce seamless models. Moreover, whereas early
techniques were mostly manual, most modern methods tend towards semi-automatic
or automatic behaviors.

In CH practice it is, however, still common to introduce a human into the
loop in order to control the fine behavior of algorithms. However, as data size is
increasing, because acquisition is becoming fast and inexpensive, this fine control
is increasingly becoming impractical, and we expect that automated methods will
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increasingly become standard even in this application field. The increasing size of
datasets is also forcing algorithm development to tackle scalability issues using
specialized techniques. For this reason, although early methods, especially for the
mapping step, required global operation with all data loaded into memory, modern
methods strive to schedule localized operations, so as to minimize peak memory
needs and I/O bandwidth.

The availability of modern fully scalable and mostly automatic techniques opens
the door to innovative applications. In particular, cloud solutions based on Web
services are emerging for performing heavy operations, with lean user interfaces
often working on mobile graphics devices.

Although in this work we have focused mostly on the registration of color
images onto the geometry, the techniques presented here are the basis for managing
a number of multimodal fusion operations. Recent trends highlight in particular
the need of enhancing geometric scans not only with the local body color of an
object, but also with a detailed representation of the material and the appearance
properties. In many cases, the rationale of the techniques reviewed here is still valid
to deal with these more complex data, with limited modifications to implement
the mapping and fusion (e.g., different descriptors for automatic alignment). On
the other hand, sometimes microscale data acquired as 2D maps also provide
information at the geometric level. For instance, reflectance transformation imaging
acquisitions (Malzbender et al. 2001) make it possible to compute high-resolution
normal maps, which, once registered, can be employed to refine the initial geom-
etry (Nehab et al. 2005; Berkiten et al. 2014). This is usually done in a post-pass,
however, a stronger coupling of the various phases of registration, mapping, and
enhancement could lead to better and faster results, especially when dealing with
massive amounts of data. An interesting avenue of future work would thus be to
exploit the power of both approaches into a common scalable framework, in order
to create highly detailed objects with higher resolution geometries combined with
detailed digital models of materials.
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